CLINICIANS
AuroLase for the
Ablation of Solid Tumors
Nanospectra’s proprietary technology, addressing a market trend towards safer, less invasive therapies, has come of age with complementary MRI/ultrasound fusion imaging. The company has moved product into the clinic and demonstrated clinical safety and efficacy in patients. AuroLase Therapy for the ablation of prostate tissue may control the middle ground between active surveillance and radical therapy with its superior safety profile and cost-effective approach compared to surgery, radiation or traditional focal therapies. Further, the technology is extendable into other cancer conditions.
Performed on an outpatient basis, the AuroLase procedure results in significantly fewer side effects enabling the patient to return to a normal lifestyle within days versus weeks. In addition, patients lose no follow-on clinical options.
SCIENTIFIC PUBLICATIONS
The following includes selected scientific publications regarding the underlying Nanospectra Biosciences technology.
-
Clinical studies have been carried out for detailed measurements of the build-up and clearance of engineered gold nanoshell in the tissues of dosed mice. These optically tunable nanoshells are under consideration for a new therapy for tumors. The proposed therapy would involve the injection of the nanoshells and their preferential accumulation in tumor sites. This will be followed by irradiation with a monochromatic near infrared laser, which will induce cellular hyperthermia, thereby eradicating the tumor. Neutron activation analysis has been used for the detection and quantitation of gold, and therefore, the nanoshells, in dosing materials, blood, bones and other tissues as well as tumors at various sacrifice times following dosing. Feasibility studies have shown instrumental neutron activation analysis to be uniquely suited for detection of the gold nanoshells over a wide dynamic range. This allows for the study of high concentrations of gold in tissues which scavenge the shells from the blood (liver, spleen, kidney) as well as for much lower concentrations in those which do not (muscle, brain). In particular, the tissues from animals sacrificed after the longest post dose delay (28 days) and the control animals required experimental optimization to ensure the lowest possible determination limits. The mass of gold in the tissue samples ranged from our determination limit (about 70 pg) to a few micrograms.
-
The following study examines the feasibility of nanoshell-assisted photo-thermal therapy (NAPT). This technique takes advantage of the strong near infrared (NIR) absorption of nanoshells, a new class of gold nanoparticles with tunable optical absorptivities that can undergo passive extravasation from the abnormal tumor vasculature due to their nanoscale size. Tumors were grown in immune-competent mice by subcutaneous injection of murine colon carcinoma cells (CT26.WT). Polyethylene glycol (PEG) coated nanoshells (approximately 130 nm diameter) with peak optical absorption in the NIR were intravenously injected and allowed to circulate for 6 h. Tumors were then illuminated with a diode laser (808 nm, 4 W/cm2, 3 min). All such treated tumors abated and treated mice appeared healthy and tumor free >90 days later. Control animals and additional sham-treatment animals (laser treatment without nanoshell injection) were euthanized when tumors grew to a predetermined size, which occurred 6-19 days post-treatment. This simple, non-invasive procedure shows great promise as a technique for selective photo-thermal tumor ablation.
-
Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Ramanenhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 x 10(10) on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured.
-
Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermalablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
-
Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.